Volume 8, Issue 1, March 2020, Page: 1-6
Evaluating the Effect of Different Mixing Rules on Thermodynamic Properties in Different Mixtures
Fatemeh Fadaei Nobandegani, Department of Food Science and Technology, Fasa University, Fasa, Iran
Abouzar Roeintan, Department of Chemistry, Emam Hossein University, Tehran, Iran
Received: Jun. 22, 2019;       Accepted: Jul. 16, 2019;       Published: Jan. 8, 2020
DOI: 10.11648/j.ajma.20200801.11      View  520      Downloads  178
Abstract
The purpose of this paper is to evaluate the effect of five different mixing rules on the calculated thermodynamic properties including vapor pressure, density and excess property of several binary mixtures. These properties are calculated by ISM (Ihm-Song-Mason) and PHS (Perturb Hard Sphere) equations of state (EOS). Also we use two interaction parameters, Kij to improve the results. The results indicate that mixing rules can effect on predicted thermodynamic properties. The Fit (MADAR-1) mixing rule gives more acceptable values. when the mixture components are similar in size, different mixing rules often do not change the errors in calculated properties more than 2%-1%. However, as the size similarity decreases, the effect of applied mixing rules becomes more important.
Keywords
Mixing Rule, Equation of State, Thermodynamic
To cite this article
Fatemeh Fadaei Nobandegani, Abouzar Roeintan, Evaluating the Effect of Different Mixing Rules on Thermodynamic Properties in Different Mixtures, American Journal of Mechanics and Applications. Vol. 8, No. 1, 2020, pp. 1-6. doi: 10.11648/j.ajma.20200801.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
U. Deiters, Fluid Phase Equlibria, 33, 267, 1987.
[2]
J. Serb. Chem. Soc. 66 (4), 2001, 213–236.
[3]
Y. S. Wei, R. J. Sadus, AIChE J. 46, 169, 2000.
[4]
A. K. Al-Matar, D. A. Rockstraw, J. Comput. Chem. 25, 660, 2004.
[5]
M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, 2nd ed., Oxford University Press, New York, 1989.
[6]
W. F. Van Gunsteren, P. K. Weiner, A. J. Wilkinson, Kluwer Academic Publishers, Dordrecht, 1997.
[7]
T. A. Halgren, J. Am. Chem. Soc. 114, 7827, 1992.
[8]
K. T. Tang, J. P. Toennies, Z. Phys. D: At., Mol. Clusters 1, 91, 1986.
[9]
A. K. Al-Matar, Ph. D. Thesis, New Mexico State University, Las Cruces, New Mexico, 2002.
[10]
J. Bzowski, J. Kestin, E. A. Mason, F. J. Uribe, J. Phys. Chem. Ref. Data 19, 1179, 1990.
[11]
J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, W. A. Wakeham, J. Phys. Chem. Ref. Data, 13, 229, 1984.
[12]
T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, Ind. Eng. Chem. Res. 1988, 27, 671.
[13]
D. Mohammad-Aghaie, M. M. Papari, J. Moghadasi, and B. Haghighi, Bull. Chem. Soc. Jpn. 2008, 81,. 10, 1219.
[14]
Richard Anthony McFarlane, University of Alberta, Fall 2007.
[15]
WU. Yugong, Z. XuanheE, F. Zhigang, Journal of Electroceramics, 2003, 11, 227–239.
[16]
M. M. Papari, S. M. Hosseini, F. Fadaei-Nobandegani, and J. Moghadasi, Korean J. Chem. Eng, 2012.
[17]
G. C. Maitland, M. Rigby, E. G. Smith, W. A. Wakeham, Intermolecular Forces: Their Origin and Determination, Clarendon Press, Oxford, U.K., 1981.
[18]
K. T. Tang, J. P. Toennies, J. Phys. Chem. B, 102, 7470, 1998.
[19]
S. M. Hosseini, Ionics 16, 571–575, 2010.
[20]
Y. Song, E. A. Mason, J. Chem. Phys. 91, 7840–7853, 1989.
[21]
Y. Song, E. A. Mason, Fluid Phase Equilib. 75 (1992) 105–115.
[22]
G. Ihm, Y. Song, E. A. Mason, J. Chem. Phys. 94, 3839–3848, 1991.
[23]
L. Maftoon-Azad, H. Eslami, A. Boushehri, Fluid Phase Equilib. 263, 1-5, 2008.
Browse journals by subject