Volume 3, Issue 5, September 2015, Page: 42-55
Influence of an Inclined Magnetic Field on Peristaltic Transport of Pseudoplastic Nanofluid Through a Porous Space in an Inclined Tapered Asymmetric Channel with Convective Conditions
Ali M. Kamal, College of Science, University of Baghdad, Baghdad, Iraq
Ahmed M. Abdulhadi, College of Science, University of Baghdad, Baghdad, Iraq
Received: Aug. 28, 2016;       Accepted: Sep. 9, 2016;       Published: Oct. 10, 2016
DOI: 10.11648/j.ajma.20150305.12      View  3191      Downloads  144
Abstract
The problem of peristaltic transport of a pseudoplastic nanofluid through a porous medium in a two dimentional inclined tapered asymmetric channel has been made. Convective conditions of heat and mass transfer are employed. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynold’s number. The governing equations for the balance of mass, momentum, temperature and volume fraction for pseudoplastic nanofluid are formulated. Effect of involved parameters on the flow characteristics have been plotted and examined.
Keywords
Pseudoplastic Nanofluid, Peristaltic Transport, Inclined Tapered Asymmetric Channel, Convective Conditions, Inclined Magnetic Field
To cite this article
Ali M. Kamal, Ahmed M. Abdulhadi, Influence of an Inclined Magnetic Field on Peristaltic Transport of Pseudoplastic Nanofluid Through a Porous Space in an Inclined Tapered Asymmetric Channel with Convective Conditions, American Journal of Mechanics and Applications. Vol. 3, No. 5, 2015, pp. 42-55. doi: 10.11648/j.ajma.20150305.12
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
T. W. Latham, Fluid motion in a peristaltic pump, MS Thesis, MiT, USA, 1966.
[2]
Y. C Fung, C. S. Yih, Peristaltic transport, ASME J, APPl. Mech. 35 (1968) 669-675.
[3]
C. Barton, S Raynor, Peristaltic flow in tubes, Bull. Math. Biophys. 30 (1968) 663-680.
[4]
A. H Shapiro, M. Y. Jafferin, S. l. Weinberg, Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech. 37 (1969) 799-825.
[5]
A. M. Abd-Alla, S. M. Abo-Dahab, A. Kilicman, Peristaltic flow of aJeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscope, J. Magn. Magn. Mater. 384 (2015) 79–86.
[6]
A. M. Abd-Alla, S. M. Abo-Dahab, H. D. El-Shahrany, Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field, J. Magn. Mater. 349 (2014) 268–280.
[7]
K. Nowar, Peristaltic flow of a nanofluid under the effect of Hall current and porous medium, Math. Prob. Eng (2014).
[8]
M. Kothandapani, J. Prakash, Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel, J. Magn. Magn. Mater. 378 (2015) 152–163.
[9]
G. Radhakrishnamacharya, Ch. Srinivasulu, Influence of wall properties on peristaltic transport with heat transfer, C. R. Mec. 335 (2007) 369–373.
[10]
S. Srinivas, M. Kothandapani, The influence of heat and mass transfer on MHD peristaltic flow through aporous space with compliant walls, Appl. Math. Comput. 213 (2009) 197–208.
[11]
A. A. Shaaban, Mohamed Y. Abou-Zeid, Effects of heat and mass transfer on MHD peristaltic flow of a non-Newtonian fluid through a porous medium between two coaxial cylinders, Math. Prob. Eng. (2013).
[12]
M. Kothandapani, J. Prakash, Influence of hea tsource, thermal radiation, and inclined magnetic field on peristaltic flow of a hyperbolic tangent nanofluid in a tapered asymmetric channel, IEEE Trans. Nanobiosci. 14 (2015) 385–392.
[13]
H. Yasmin, T. Hayat, N. Alotaib, H. Gao, Convective heat and mass transfer analysis on peristaltic flow of Williamson fluid with Hall effects and Joule heating, Int. J. Biomath. (2014), http://dx.doi.org/10.1142/S1793524514500582.
[14]
M. Kothandapani, J. Prakash, Convective boundary conditions effect on peristaltic flow of a MHD Jeffrey nanofluid, Appl. Nanosci. (2015), http://dx.doi.org/10.1007/ s13204-015-0431-9.
[15]
R. Ellahi, M. M. Bhatti, K. Vafai, Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct, Int. J. Heat Mass Transf. 71 (2014) 706–719.
[16]
T.Hayat, F. M. Abbasi, Maryem Al-Yami, Shatha Monaquel, Slip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effects, J. Mol. Liq. 194 (2014) 93–99.
[17]
M. Mustafa, S. Abbasbandy, S.Hina, T.Hayat, Numerical investigation on mixed convective peristaltic flow of fourth grade fluid with Dufour and Soret effect, J. Taiwan Inst. Chem. Eng. 45 (2014) 308–316.
[18]
F. M. Abbasi, T. Hayat, A. Alsaedi, B. Ahmed, Soret and Dufour effects on peristaltic transport of MHD fluid with variable viscosity, Appl. Math. Inf. Sci. 8 (2014) 211–219.
[19]
M. Kothandapani, J. Prakash, Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel, Int. J. Heat Mass Transf. 81 (2015) 234–245.
[20]
Obaid Ullah Mehmood, N. Mustapha, S. Shafie, T. Hayat, Partial slip effect on heat and mass transfer of MHD peristaltic transport in a porous medium, Sains Malays. 43 (2014) 1109–1118.
[21]
S.U.S. Choi, Enhancing thermal conductivity of fluid with nanoparticles de velopments and applications of non-Newtonian flow, In: ASMEFED, vol. 66, 1995, pp. 99–105.
[22]
D. Tripathi, O. A. Beg, Astudy on peristaltic flow of nanofluids: applicationin drug delivery systems, Int. J. Heat Mass Transf. 70 (2014) 61–70.
[23]
S. A. Shehzad, F. M. Abbasi, T. Hayat, F. Alsaedi, Model and comparative study for peristaltic transport of water based nanofluids, J. Mol. Liq. 9 (2015) 723–728.
[24]
F. M. Abbasi, S. A. Shehzad, T. Hayat, F. E. Alsaadi, Impact of magnetic field on mixed convective peristaltic flow of water based nanofluids with Joule heat ing, Z. Naturforsch. A 70 (2014) 125–132.
[25]
S. Hina, M. Mustafa, T. Hayat, N. D. Alotaibid, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties, Appl. Math. Comput. 263 (2015) 378–391.
[26]
T. Hayat, A. Tanveer, F. Alsaadi, G. Mousa, Impact of radial magnetic field on peristalsis incurved channel with convective boundary conditions, J. Magn. Magn. Mater. 403 (2016) 47–59.
[27]
T. Hayat, R. Iqbal, A.Tanveer, A. Alsaedi, Influence of convective conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel, J. Magn. Magn. Mater. 408 (2016) 168-176.
Browse journals by subject